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1 Introduction

The generation of mass for the gauge sector via spontaneous symmetry breaking is a trade-

mark ingredient of the Standard Model. The presence of massive particles elicit a set of

important questions such as its implications for unitarity and the possibility of the mass

inducing strong coupling effects. The correct treatment of these questions provided tools

to understand the W-bosons and mass bounds on the Higgs [1–3].

In the context of the AdS/CFT correspondence which is a conjectured duality between

N = 4 Super symmetric Yang-Mills (SYM) and string theory on AdS5 × S5 [4], the Higgs

mechanism is well understood. It corresponds to taking the decoupling limit on the su-

pergravity background describing two stacks of D3-branes keeping the distance between

them fixed, the distance between the two stacks is the dual to the mass of the W-boson in

the field theory. The resulting supergravity background is explicitly known and has been

discussed in the holographic setup [5].

Through a combination of modern unitarity methods and some string inspired ap-

proaches, a lot has been learned recently about the structure of scattering amplitudes in

general and in particular in N = 4 SYM [6]. It is fair to say that the spontaneously broken

phase has received considerably less attention. Recently, Alday and Maldacena have pro-

posed a prescription for computing some scattering amplitudes at strong coupling in the
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framework of the AdS/CFT correspondence. The prescription states that the color-ordered

n-gluon MHV amplitude can be computed as [7] (see also reviews [8, 9])

An ∼ exp

(

−
√

λ

2π
A(k1, . . . , kn)

)

, (1.1)

where A is the area of the minimal surface in the supergravity background that ends on

a sequence of light-like segments on the boundary whose lengths is proportional to the

momenta ki.

The above prescription allows for a small modification that enables us to peek into

the structure of the spontaneously broken phase of N = 4 supersymmetric Yang-Mills

(SYM) with gauge group SU(n1 + n2) → SU(n1) × SU(n2) × U(1). Namely, we consider

the Alday-Maldacena prescription in the context of a supergravity background dual to the

spontaneously broken phase of N = 4. Although we are not able to solve the problem

exactly, we consider various interesting approximations amenable to analytic work.

The paper is organized as follows. In section 2 we review some technical aspects of

the Alday-Maldacena prescription [7]. Section 3 contains a discussion of the solution and

the details of our evaluation of the amplitudes in specific kinematic regimes. Section 4

contains a discussion of our result from the field theoretic point of view and points out

to some interesting open problems. We include two appendices, appendix A contains a

discussion of the structure of the breaking of the gauge group and the appendix B discusses

an alternative way of regularizing some of the expressions presented in the main text.

2 The Alday-Maldacena/Kruczenski solution

2.1 General case

We will be interested in classical world sheets embedded in spacetimes with metrics of the

following form:

ds2 = q2(r)dxµdxµ + p2(r)dr2. (2.1)

Following [7], we perform a T-duality and arrive at a metric of the form

ds2 =
1

q2(r)
dyµdyµ + p2(r)dr2. (2.2)

This T -duality helps reformulate the scattering problem as a problem for a Wilson loop

with simpler boundary conditions. The induced metric on the worldsheet is then

ds2
WS =

[

1

q2
ηµν∂1y

µ∂1y
ν + p2(∂1r)

2

]

(dσ1)2 +

[

1

q2
ηµν∂2y

µ∂2y
ν + p2(∂2r)

2

]

(dσ2)2

+2dσ1dσ2

[

1

q2
ηµν∂1y

µ∂2y
ν + p2∂1r∂2r

]

. (2.3)

We will assume configurations of the form

σ1 = y1, σ2 = y2, y0 = y0(y1, y2), r = r(y1, y2). (2.4)

– 2 –
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which leads to

S =
1

2πα′

∫

dy1dy2
1

q2

√

1 − (∂iy0)2 + p2q2(∂ir)2 − p2q2(∂1r∂2y0 − ∂2r∂1y0)2.

It is consistent to set the other yis to zero because they enter quadratically under the

square root (and so their equations of motion are satisfied by yi = 0).

The specific cases of concern for us will be of the form:

q2 = H(r)−
1

2 , p2 = H(r)
1

2 , (2.5)

specifically

H(r) =







R4Nc

r4 for AdS

R4
(

n1

r4 + n2

(r−a)4

)

for the Higgsed case
(2.6)

Here, and throughout, we will use a non standard normalization R4 = 4πgsl
4
s , keeping the

dependence on various ni explicit.

2.2 The four-gluon amplitude

Here we simply summarize the known woldsheet solution written by AM corresponding

to the 4 point gluon scattering amplitude. This solution was presented in [7] and was

generated from the cusp solution of [10]. First, plugging in the AdS case into the above

action, we find

S =
1

2πα′

∫

dy1dy2
√

gWS (2.7)

=
N

1

2
c R2

2πα′

∫

dy1dy2
1

r2

√

1 − (∂iy0)2 + (∂ir)2 − (∂1r∂2y0 − ∂2r∂1y0)2.

The solution for the generic case is

r =
a

cosh u1 cosh u2 + b sinhu1 sinhu2
, y0 =

a
√

1 + b2 sinhu1 sinhu2

cosh u1 cosh u2 + b sinhu1 sinhu2
,

y1 =
a sinh u1 cosh u2

cosh u1 cosh u2 + b sinhu1 sinhu2
, y2 =

a cosh u1 sinhu2

cosh u1 cosh u2 + b sinhu1 sinhu2
.

To put the solution in the above form, we must invert the relations for y1 and y2. This

is accomplished by the change of coordinates

u2 = arctanh

(

a

2y1b

(

1 −
√

1 − 4
y1y2b

a2

))

u1 = arctanh

(

a

2y2b

(

1 −
√

1 − 4
y1y2b

a2

))

(2.8)

– 3 –



J
H
E
P
0
6
(
2
0
0
9
)
0
2
9

which gives

r =





(

4y2
1b

2 − 2a2 + 2a
√

a2 − 4by1y2 + 4by1y2

)

by2
1

×

(

4y2
2b

2 − 2a2 + 2a
√

a2 − 4by1y2 + 4by1y2

)

by2
2





1/2

× y1y2

2(a −
√

a2 − 4by1y2)
(2.9)

y0 =
1

2b

√

(1 + b2)
(

a −
√

a2 − 4by1y2

)

. (2.10)

Further, the relations to the Mandelstam variables is given by

− s(2π)2 =
8a2

(1 − b)2
, −t(2π)2 =

8a2

(1 + b)2
, (2.11)

or inverting these relations we find

a =
π
√

2
√

(−t)(−s)

(
√

(−s) +
√

(−t))
, b =

(
√−s −√−t)

(
√−s +

√−t)
. (2.12)

2.3 Evaluating the action, and the AM prescription

The key physical information is encoded in the value of the action, and thus we need to

compute it. The actions we wish to compute, as they stand, are infinite. There are different

ways of introducing a cut-off, and we outline a few below.

One may modify the solution somehow so that the boundary conditions are not met

at r = 0, but rather at r = r0. One can imagine doing this in two possible ways. One may

search for other solutions to the same action such that the boundary conditions are met at

r = r0, and then take a limit where r0 → 0, and examine the divergences. This appears to

be the safest course of action, as one is always meeting the boundary conditions at every

stage. However, the above solutions may be hard to find, and so one may wish to consider

an action which also depends on r0, and so the action only collapses to the original action

in the r0 → 0 limit. This has the utility of allowing for almost any function to be written

down, however, one must be careful that the action converges to the desired action fast

enough (this category of regulation includes the dimensional regularization used in [7]).

In the case of the “wedge” boundary condition (two lightlike lines), a solution with

boundary conditions set at r = r0 are now known exactly. The new solution was presented

in the last appendix of [11]. In appendix B we consider the effects of regularizing with

this solution.

A simpler approach, which was presented in [8], simply takes the solution and cuts it

off at r = r0. This has the utility of being simple, however the boundary conditions are

only met in the limit that r0 → 0, and only in a limiting sense. In appendix B we compare

this type of regulation to that of fixing the boundary conditions at r = r0 and then taking

the limit as r0 → 0.

– 4 –
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In this paper, we will mainly focus on the simple cutoff prescription. We will not

need to construct new solutions in this case, and so for our purposes is the easiest of the

above regulations.

We now outline how to use the above classical string solution to determine a gauge

invariant quantity in the gauge theory. In [7] it was recognize that the factorization of

planar (large Nc), N = 4 SYM scattering amplitudes offers a gauge invariant quantity one

may be able to compute holographically. The factorization of the amplitudes reads

An = An,treeMn (2.13)

An,tree contains all lorentz and color indices. This leaves Mn as a gauge invariant object

that one may be able to compute using AdS/CFT. In [7] (AM) they argue that the area

of the classical string world sheet yields this piece of information. More specifically, they

argue that after performing a T-duality along the 4 flat spacetime directions x0 . . . x3,

one must compute the classical area of a worldsheet ending on n lightlike line segments

pi. These n lightlike vectors are given by the n lightlike momenta from the scattering

amplitude one wishes to compute. In [7], they explicitly perform such a calculation for the

4-point amplitude, regulating the surface area using dimensional regularization, and in [8]

via the simple cutoff prescription mentioned above. The relation of this surface area to the

quantity Mn is given by

Mn = e−
√

λ
2π

Area2 (2.14)

where Area2 is the 2 dimensional area of the world sheet as given by the pi.

Here, we will again be calculating the area of a classical world sheet, however, in a

higgsed model. As shown in appendix A, the deep IR of the higgsed theory contains 3 copies

of the N = 4 gauge multiplets (with SU(n1),SU(n2), and U(1) gauge groups, respectively)

after integrating out massive modes. Hence, we expect the factorization of amplitudes to

appear in the deep IR, keeping in mind that the different sectors do not interact. Deep

the UV, one expects that the vevs may be neglected, and so one again arrives at 1 copy of

the N = 4 gauge multiplets (with SU(n1 + n2) gauge group). Again, one therefore expects

factorization of the amplitudes in this limit. We will assume here that factorization (2.13),

is always valid (although we emphasize that this is indeed an assumption), and so one may

always define such an Mn. It would be interesting to see if this is indeed the case on the

field theory side, and see if this follows from N = 4 supersymmetry, rather than from the

full N = 4 superconformal symmetry.1

One final note is in order, and it helps elucidate some of the implications of assuming

the factorization in (2.13). In (2.13), Atree is understood to have some values of the coupling

constant g in them. Since this is a non conformal theory g1 and g2 (the couplings for SU(n1)

and SU(n2) respectively) start as being different in the deep IR. We will assume that the

Lagrangian found in the appendix is appropriate, up to the couplings gi running with scale.

At the scale given by the masses of the W bosons, these couplings should unify, and become

1This is seen most easily from the D3 brane picture: the number of killing spinors preserved by 2 parallel

stacks is the same as one, hence 16 preserved supercharges (see [25]). The near horizon limit, however, does

not introduce the conformal symmetry, thanks to the separation vector of the stacks.

– 5 –
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the coupling constant for the SU(n1 + n2) gauge theory. However, during the entire flow,

the form of Atree (up to the flow of g) remains the same when considering scattering within

a given SU(ni) (i.e. restricting both incoming and outgoing particles). This is because

coupling to fields in the adjoint the other SU(ni),
2 is mediated by W ′s, and these must

be produced in pairs, thanks to the extra U(1). Therefore, the only coupling between

the SU(n1) and SU(n2) sectors occur at loop level. However, because we assume that

whole amplitude is proportional to the tree amplitude, we conclude that there is in fact

no scattering between the SU(n1) sector and the SU(n2) sector (without producing W ’s).

This is in fact the case for the pure N = 4 theory with unbroken SU(n1 + n2) gauge group

in the planar limit, and is due to the factorization. If one wishes to have both SU(n1) and

SU(n2) fields in an interaction, one must in fact, also couple to at least one pair of W s

during the interaction. We do not allow loops, and so these W s are part of the asymptotic

states (either incoming or outgoing) in the interaction.

Let us argue this from the standpoint of the world sheets near two stacks of D3 branes,

which we label p and p′. First, we note that we are working at large N and small gs, so we

wish to only consider disc diagrams. Next, we consider inserting several vertex operators

on this disc. Let us denote vertex operators associated with p − p strings as VX , p′ − p′

strings as VY and p′ − p strings as VW . Because there is just one boundary, it is clear that

a VX insertion cannot appear next to a VY insertion, because the boundaries do not agree

(further, the Chan-Paton factors do not agree). Hence, there are no diagrams with only VX

and VY insertions, only insertions of the form VXVXVW VY VY VW Vx · · · are allowed. The

VW insertions are exactly the “W” fields mentioned above. Hence, we expect this same

behavior from the string side, at least in the strict gs → 0 limit. One may need to be

careful once considering the appropriate vertex operators in AdS, however.

Given the above assumptions, we will calculate the corrections to the amplitudes Mn

holographically in the next section.

3 Higgs phase

It is of interest to understand how the mass of the higgs and the W-bosons can affect

amplitudes. We consider a simple model. Taking the decoupling limit of two stacks of D3

branes leads to a theory with a Higgs branch where the vev of the Higgs field (or mass of

the W-boson) is proportional to the distance between the stacks.

The supergravity solution has a metric

ds2 = H−1/2dxµdxµ + H1/2dzmdzm,

H = R4







n1
(−→r +

−→a0n2

n1+n2

)4 +
n2

(−→r − −→a0n1

n1+n2

)4






. (3.1)

where −→r = (z1, z2, . . . , z6) and −→a0 is a constant displacement vector. Solving for gluon

scattering in this background is challenging and in what follows we make a series of ap-

2Henceforth we will refer to fields transforming in the adjoint of the SU(n1) as being “in the SU(n1)

sector”.
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AdS−ThroatAdS−Throat

AdS−Boundary AdS−Boundary

T−Duality

Figure 1. The action of T-duality on the geometry of the background.

proximations. First, however, we note that the above solution still has an SO(5) symmetry

that leaves −→a0 fixed. We use this vector to define a “north pole” in our S5 coordinates. The

directions orthogonal to −→a0 appear in such a way that setting them to 0 satisfies the world-

sheet equations of motion (they appear as functions of quadratic functions). We therefore

may consider only working with the world sheet at the ”north pole” of these coordinates,

and we will denote the coordinate along −→a0 as r. In such a coordinate system, we find that

H = R4

(

n1

(r + a1)
4 +

n2

(r − a2)
4

)

(3.2)

such that the total separation is defined by a0 = a1 + a2.

We will look at two approximations. First, we will look at the case where the scale of

interaction a and radial cutoff r0 are much bigger than the scale of separation of the two

stacks. Second, we will look a the case where a0 is much larger than the other scales in the

problem. In these approximations, we will expand the action to the form

S = S0 + ǫS1 (3.3)

where S0 is an action exactly of the form considered by Alday and Maldacena. To evaluate

the correction to the total action, one simply needs to insert the 0th order solution into

the corrected action. Hence, in our approximation schemes with simple radial cutoff, we

will not need to compute any new solutions.

Before doing this, however, a few simple observations are in order. One should note

that the T-duality keeps the harmonic functions intact, only affecting whether they come

in a numerator, or denominator. If one has a region of coordinates where one term or

another dominates in the harmonic function, this is still true in the T dual coordinates.

For our simple case, near either stack of branes, we have an AdS throat. However, in the

T-dual coordinates, the throat becomes a boundary. These boundaries are the origin of the

divergences in the values of our actions. The the interpretation of these area divergences

is that they are the IR divergences arising in the Feynman amplitude.

– 7 –
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In our Higgsed theory we will have two sets of massless fields, namely two copies of

N = 4, one for each throat.3 We wish to consider scattering of fields within a given SU(ni)

sector, say the SU(n1) sector. These n point amplitudes are expected to have some IR

divergences. As mentioned above, we will consider regulating these IR divergences by a

simple cutoff near the stack where the boundary conditions are imposed.

Note, from our stringy picture above, that when considering scattering only in the

SU(n1) sector that the area divergences are only associated with the stack of n1 branes,

as the singularity structure of the metric near r = −a1 is completely determined by this

stack.4 This is because the boundary conditions in either T-dual frame must be satisfied

at r = −a1 when considering scattering within the SU(n1) sector. We emphasize, however,

that the above picture is valid only in the strong coupling and large n1, n2 regime. Further,

we also note that when the massive W fields (with one SU(n1) index and one SU(n2) index)

appear in external states we expect to have other types of divergences coming both throats,

as the external W s stretch between the stacks of branes (onto each boundary in the T-dual

frame). One can see one such type of divergence quite easily. Asymptotically, an external

W state will correspond to a string stretched between the two stacks following a straight

timelike geodesic (because the W is massive). This straight string configuration will have

an area divergence associated with getting near to either r = −a1 or r = a2 because the

geodesic is non null. The procedure for imposing an IR cutoff, however, remains unclear,

as one would presumably place 2 regulator branes near each boundary. We speculate that

one should place the 2 regulator branes such that they were each near their respective

stack, but at the same “potential” value as measured by the harmonic function. Then,

one would relax the branes to the stacks, but keeping them always at the same “potential”

value, thus only having one cutoff parameter given by the value of H(r).

3.1 |s|, |t| ≫ m2
IR ≫ M2

W

In this section, we will evaluate the action using mass parameter of the W as the perturba-

tive parameter. We expect this to be a good approximation when a and the IR cutoff r0 are

both greater than the characteristic distance scale a0 (this is the hierarchy in the subsection

title, given that s, t ∼ a2,mIR ∼ r0,MW ∼ a0). The sketch of this is shown in figure 2.

For evaluating the expression, we use a “center of mass coordinate” such that the

3In addition we have the extra U(1) fields as well (the “radion” modes). However, this U(1) may not be

promoted to U(2) by any addition of probe branes, as the SU(ni) may be promoted to an SU(ni +1). This,

then, does not allow for the same type of IR regulation that the two SU(ni) factors. Hence, one cannot

consider the IR regulation that we employ for scattering these fields, and so we only consider scattering

fields in the adjoint of SU(n1) or in the adjoint of SU(n2). It would be interesting to explore the bulk

modes of this background, find the appropriate radion field (and superpartners), and try to match some of

its properties to the Higgsed N = 4 theory.
4The divergences also depend on the boundary conditions imposed at the brane too. For example we

will be considering boundary conditions with cusps. Other boundary conditions can also have divergences

in the area of the worldsheet. All of these divergences, however, depend on the infinite (spacelike) geodesic

distance to the boundary of AdS, where the boundary conditions are imposed.

– 8 –
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a0

r0

a

Figure 2. The scales involved in the limit that a0 is small, compared to the other scales in the

problem, including the IR regulator r0 and the scale of the interaction given by a =
π
√

2
√

(−t)(−s)

(
√

(−s)+
√

(−t))
,

which determines roughly the depth in AdS into which the worldsheet falls.

harmonic function

H = R4







n1
(−→r +

−→a0n2

n1+n2

)4 +
n2

(−→r − −→a0n1

n1+n2

)4






(3.4)

where −→a 0 is the displacement vector of the two stacks of branes. Again, we will work at the

“north pole” of the five sphere defined by this displacement vector. In these coordinates,

the harmonic function becomes

H = R4







n1
(

r + a0n2

n1+n2

)4 +
n2

(

r − a0n1

n1+n2

)4






(3.5)

where a0 is the magnitude of the corresponding vector. At r larger than a0, there is no

linear term in a0 by construction, and the expansion begins at second order. Hence, we

take the full action

S =
R2

2πα′

∫

dy1dy2

√

√

√

√

√

√







n1
(

r + a0n2

n1+n2

)4 +
n2

(

r − a0n1

n1+n2

)4







×
√

1 − (∂iy0)2 + (∂ir)2 − (∂1r∂2y0 − ∂2r∂1y0)2. (3.6)

– 9 –
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and expand for a0 ≪ r, and find the first two orders

S =
R2

2πα′

∫

dy1dy2

√
n1 + n2

r2

√

1 − (∂iy0)2 + (∂ir)2 − (∂1r∂2y0 − ∂2r∂1y0)2. (3.7)

+
R2

2πα′

∫

dy1dy2
5
√

n1 + n2n1n2a
2
0

r4(n1 + n2)2

√

1 − (∂iy0)2 + (∂ir)2 − (∂1r∂2y0 − ∂2r∂1y0)2.

Note that in the above, the n1 → 0 or n2 → 0 limit yields no change to the action, as we

should expect: if there isn’t a second stack of branes, there is nothing new.

So our job as stated above is to evaluate the leading term in the action using the 0th

order solution. We find that the general s 6= t case difficult to analyze, and so we proceed

by taking the simpler s = t case.

3.1.1 s = t

As stated, we wish to evaluate the action

∆S =
R2

2πα′

∫

dy1dy2
5
√

n1+n2n1n2a
2
0

r4(n1 + n2)2

√

1− (∂iy0)2+ (∂ir)2− (∂1r∂2y0− ∂2r∂1y0)2 (3.8)

on the solution for s = t.

The s = t case written in AM is given by

r =

√

(a2 − y2
1)(a

2 − y2
2)

a
, y0 =

y1y2

a
. (3.9)

Defining a new set of variables

y1 = ŷ1a, y2 = ŷ2a (3.10)

and defining a new set of dependent variables

r = r̂a, y0 = ŷ0a (3.11)

We find that the action scales to

∆S(z, y0) = ∆
1

a2
S(z, y0)|a=1 (3.12)

and so we will take the a = 1 case, and simply scale it at the end.

Plugging the a = 1 case into the action, we find

∆S =
R2

2πα′

∫ 1

−1
dy1

∫ 1

−1
dy2

5
√

n1 + n2n1n2a
2
0

(n1 + n2)2(1 − y2
1)

2(1 − y2
2)

2
(3.13)

This integral is divergent, and so we must regulate it. We take the simple regulator that

r = ǫ = constant =
√

(1 − y2
1)(1 − y2

2) (3.14)

This restricts the bounds of integration in y1 and y2.

y1 ∈
[

−
√

1 − ǫ2,
√

1 − ǫ2
]

, y2 ∈
[

−
√

1 − y2
1 − ǫ2

1 − y2
1

,

√

1 − y2
1 − ǫ2

1 − y2
1

]

(3.15)
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Recall that the above r = ǫ is really r̂ = ǫ. This means that the cutoff will scale to r = aǫ.

We do not wish our regulator to be dependent on the scale of the collision, hence we take

that ǫ = r0

a where r0 is now independent of a. Recall also that we will be working in a

regime where a great deal of the worldsheet extends beyond the IR regulator. Hence, we

must have that a ≫ r0 and so ǫ is a unitless perturbative parameter: physically it is “IR

cutoff/scale of interaction”.

The only place that this cutoff appears is in the bounds of integration, and so we will

expand these to next to leading order in ǫ such that we can trust the first 2 terms in this

epsilon expansion. This is taking the ǫ0 and ǫ2 terms in the bounds of integration. We

perform the y2 integration, expand to next to leading order in ǫ: one gets a divergence of

the form ǫ−2 with logs, and an ǫ0 term with logs. We then perform the y2 integration, and

expand this to next order ǫ2 order as well. Doing this, we find

∆S =
R2

2πα′

√
n1 + n2n1n2a

2
0

a2(n1 + n2)2

[

5

4
(12 ln(2) − 8 ln(ǫ) + 1) ǫ−2

+
5

48

(

24

(

3 ln(2) − ln(ǫ) − 5

4

)(

ln(2) − ln(ǫ) − 1

4

)

+
57

2
+ 2π2

)

]

(3.16)

plus terms that drop as ǫ2. One may, if one wishes, reintroduce a via ǫ = r0/a, and so

explicitly see the IR cutoff r0 and the scale of interaction a ∼ s = t.

For comparison, we will also need the zeroth order action

S =
R2

2πα′

∫

dy1dy2

√
n1 + n2

r2

√

1 − (∂iy0)2 + (∂ir)2 − (∂1r∂2y0 − ∂2r∂1y0)2 (3.17)

and find that evaluated on the equations

S0 =
R2

2πα′

∫

dy1dy2

√
n1 + n2

(1 − y2
1)(1 − y2

2)
. (3.18)

Using the same regulation technique as above, we find

S0 =
R2√n1 + n2

2πα′

[

1

12

(

72 ln(2)2 − 3 − 96 ln(2) ln(ǫ) + 24 ln(ǫ)2 − 2π2
)

+
1

16
(−12 ln(2) + 9 + 4 ln(ǫ)) ǫ2

]

. (3.19)

Note that the most divergent term is

R2√n1 + n2

2πα′
1

12
24 ln(ǫ2) ∼

√
λ

2π

1

2
ln(r2

0)
2 (3.20)

which is what we needed to have the same answer as Alday in [8].

Now a bit of numerology. Note that the corrected action is more divergent by a power

of ǫ−2. This may be expected. Given that we are dealing with a theory with massless

propagators and then dealing with the mass of some of them perturbatively. To be more
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explicit, we write out an arbitrary diagram with massive propagators. We then expand

these propagators for small mass M , i.e. 1/(p2 + M2) → 1/p2 − M2/p4. Therefore, when

expanding to leading order, the integral will be 2 more powers divergent in p around p = 0

and hence go like 1/ǫ2 where ǫ is the IR regulator. This is exactly what we are seeing.

To fully see any effect, however, we would need to find the explicit solution near one

of the stacks of branes, and so go into a region where r ≪ a0. This would go beyond our

approximation method here, where we have assumed a0 ≪ r0 < r.

For completeness, we plug in ǫ = r0/a = mIR/a(s, t, u), a0 = MW and

a =
π
√

2
√

(−t)(−s)

(
√

(−s) +
√

(−t))
, b =

(
√−s −√−t)

(
√−s +

√−t)
(3.21)

taking s = t, and find5

∆S =
R2√n1 + n2

2πα′
n1n2M

2
W

(n1 + n2)2
5

4





(

12 ln(2) + 1 − 4 ln
[

2m2

IR

π2(−s)

])

m2
IR

(3.22)

− 1

6

[

−6
(

6 ln(2) − ln
(

2m2

IR

π2(−s)

)

− 5
2

)(

2 ln(2) − ln
(

2m2

IR

π2(−s)

)

− 1
2

)

+ 57
2 + 2π2

]

π2(−s)



 .

One should note that while these terms look singular, the restrictions M2
W ≪ m2

IR ≪ |s|
confines the region of validity to where the above is small.

Similarly, we find that the original action is

S0 =
R2√n1 + n2

2πα′

[

1

2

(

ln

(

m2
IR

8π2(−s)

))2

− 2 ln(2)2 − 1

4
− 1

6
π2

]

(3.23)

which agrees exactly with Alday [8].

3.2 |s|, |t| ≪ M2
W : effect of massive Ws in loops.

There is another region of interest as well. We will consider the large W mass limit, and

so we take a0 → ∞. In this limit, the above action becomes

S =
R2√n1

2πα′

∫

dy1dy2
1

r2

(

1 +
1

2

r4

a4
0

n2

n1

)

√

1 − (∂iy0)2 + (∂ir)2 − (∂1r∂2y0 − ∂2r∂1y0)2.

(3.24)

We expect the r4/a4
0 correction to be more convergent as it has extra powers of r in the

numerator. We will in fact be able to evaluate this correction analytically, and do all

relevant integrations. This has the important quality that the answer does not depend at

all on r0, i.e. this information is IR regulator independent. Further, we expect that higher

5Note that these substitutions do not match in mass dimension. One may include relevant factors of

α′ if one wishes. However, the action is unitless, and so all such factors divide out, and leave expressions

exactly the same as doing the above substitutions. For example, note that a must be a length, where the

r.h.s. of (3.21) is a momentum, and so one must include an α′ on the right to match units.
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0a

r0

a

Figure 3. The scales involved in the limit that a0 is large, compared to the other scales in the

problem, including the IR regulator r0 and the scale of the interaction given by a =
π
√

2
√

(−t)(−s)

(
√

(−s)+
√

(−t))
,

which determines roughly the depth in AdS into which the worldsheet falls. Interestingly, the IR

regulator does not play a role in the corrected action, as this piece is finite. Therefore, the value of

the corrected action is IR regulator independent.

order corrections continue to be convergent because the power series will only continue to

have higher powers in r.

As mentioned above, to get the correction to the action to leading order, one simply

needs to evaluate the old solution in the new action. The solution in the y1, y2 coordinates

is as follows

r =





(

4y2
1b

2 − 2a2 + 2a
√

a2 − 4by1y2 + 4by1y2

)

by2
1

×

(

4y2
2b

2 − 2a2 + 2a
√

a2 − 4by1y2 + 4by1y2

)

by2
2





1/2

× y1y2

2(a −
√

a2 − 4by1y2)
(3.25)

y0 =
1

2b

√

(1 + b2)
(

a −
√

a2 − 4by1y2

)

. (3.26)

Note that the b = 0 limit is smooth. We find that after plugging into the corrected

Lagrangian, we can write it as

∆L =
R2√n1

2πα′ (3.27)

×n2

n1

(−2y1 + a(M + 1))(2y1 + a(M + 1))(−2y2 + a(M + 1))(2y2 + a(M + 1))

8Ma4
0a

2(1 + M2)
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where we have defined

M ≡
√

a2 − 4by1y2

a
. (3.28)

Note that the branch of the square root appearing in the corrected action has been taken

so that the integrand remained positive (which one can easily check at y1 = y2 = 0). The

definition of M is also well defined and unambiguous inside the range of integration (which

we will discuss shortly). To make the bounds of integration as easy as possible, we will

further rotate to the coordinates y′1 and y′2 defined by

y1 =
1√
2

(

y′1 + y′2
)

y2 =
1√
2

(

−y′1 + y′2
)

(3.29)

and then we will drop the primes. The bounds of integration are given by where z = 0,

and these are determined on the four lines

y2 =
(1 − b)y1 −

√
2a

(1 + b)
y2 =

(1 − b)y1 +
√

2a

(1 + b)

y2 =
−(b − 1)y1 −

√
2a

(1 + b)
y2 =

−(1 − b)y1 +
√

2a

(1 + b)
(3.30)

Further, we see that while inside of the diamond defined by these lines, M is not imaginary.

An advantage of the coordinate change is now evident: One may compute the integral for

the y1 < 0 part of the diamond, and then double it (given the yi → −yi symmetry), and such

a procedure is easiest in the above coordinates. The mechanics of this are straightforward,

but tedious. We simply state the final result here

∆S =
R2√n1

2πα′
n2a

4

6a4
0n1

(1 + b2) ln
(

(1+b)2

(1−b)2

)

− 4b

b3
. (3.31)

As a simple check, one may easily take a b → 0 limit of the above, and compare it to the

b → 0 limit of the original integral and see that they agree. We may reexpress the above

in terms of the Mandalstam variables s and t using

a =
π
√

2
√

(−t)(−s)

(
√

(−s) +
√

(−t))
, b =

(
√−s −√−t)

(
√−s +

√−t)
(3.32)

and make the replacement a0 = MW . Doing so, we find

∆S =
R2√n1

2πα′
n2π

4

n1M
4
W

(

4

3

(−t)2(−s)2((−s) + (−t))

((−t) − (−s))3
ln

(−t

−s

)

− 8

3

(−t)2(−s)2

((−t) − (−s))2

)

(3.33)

and so this action is symmetric under s ↔ t as it should be. Note also that the s = t limit

is smooth, as pointed out above (this is the b = 0 limit).

To compare to the field theory, we note that

A = exp(−Stot) = exp(−SAM) exp(∆S) = exp(−SAM) (1 − ∆S) (3.34)
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so that the right hand factor may be interpreted as the loop diagrams with massive fields

running in the loop (the subscript AM is Alday Maldacena). Therefore, on the field theory

side, we should express

A(s, t,M, r0) = A(s, t,M = ∞, r0) × (1 + correction) . (3.35)

We will qualitatively compare the correction we have found to field theory calculations in

the next section.

4 Discussion and outlook

In this section we discuss the results of the previous sections largely by comparing them

with similar results in field theory. Unfortunately, the field theory results are rather limited

for our scope. For example, the general case of spontaneous breaking SU(n1 + n2) →
SU(n1) × SU(n2) × U(1) has not been tackled in the literature. We have taken a modest

step towards its perturbative understanding in appendix A. It would be interesting to

pursue the field theoretic study of the effective action of the general case of spontaneously

broken phase of N = 4 SYM with gauge group SU(n1 + n2).

Some interesting questions have been raised in the special case of the above breaking:

N = 4 SYM with gauge group SU(2) spontaneously broken to U(1). For example, the

question of UV finiteness of the theory in this phase can be argued on general grounds but

the concrete details of the cancelation are not spelt out in the literature. The precise struc-

ture of the low energy effective action was discussed in [12]. Another important question in

this context is whether the amplitudes are given only by box diagrams (in the perturbative

regime). Although this is widely believed to be true, the full proof is lacking. The analysis

of [12] provides strong evidence that the answer is in the affirmative. Explicit computation

of scattering amplitudes is another are where results are scarce. For example, explicit ampli-

tudes can be found in [13, 14]. Interestingly, the work of [14] provides further evidence to the

hypothesis that in the case of N = 4 SYM with gauge group SU(2) spontaneously broken to

U(1) the scattering amplitudes, including those with external massive states are box type.

According to the Alday-Maldacena prescription [7], our calculation should be inter-

preted as A4 = AtreeM4. Since our M4 contains only terms of the form 1/M4
W we do

not foresee terms of the form M6
W in the expansion that could potentially indicate triangle

contribution. Moreover, since the expression for M4 contains only singularities that can

be induced at one-loop some hope remains that the full amplitude allows for a type of

exponentiation Ansatz similar to generalizations of the BDS one [18]. We recall the heart

of the BDS ansatz for the scattering cross section, and it reads

A = Atree × e
f(λ)

1-loop
tree-level . (4.1)

Let us take that the form of the factorization that we have is exactly the same. Hence,

the 1 loop result contain 2 pieces: those with only massless fields running in the loops,

and ones with massive fields running in the loops. We further only consider box diagrams,

as the preceding paragraph suggests. Also, recall that massive fields can only be created

– 15 –



J
H
E
P
0
6
(
2
0
0
9
)
0
2
9

or destroyed in pairs. With these pieces of information, we can conclude that the 1 loop

amplitudes have only 2 pieces: a box diagram with massless fields running in the loop

(which comes from the theory with the massive fields integrated out), and a box diagram

with massive fields running in the loop. Hence, the only new contribution comes from the

new box diagram. In what follows, we will look at this box integral in various limits, and be

able to read off directly the part we need to compare to our corrected actions. Implicit in

this is the assumption that the running of the coupling λ (or equally g) does not contribute

to the quantity we are calculating, although this too appears as an overall contribution.

With this preamble we proceed to discuss our results. First we notice that the structure

of singularities that we found is of the 2 following forms: In the case of s, t ≫ M2
IR ≫ M2

W ,

we found

1

M2
IR

,
ln MIR

M2
IR

, ln2 MIR, ln MIR; (4.2)

In the other case |s|, |t| ≪ M2
W , we found

1

M4
W

, (4.3)

and we have a completely finite answer. We wish to compare these qualitatively with the

field theory side. Because we are taking the same form of the factorization given above,

we can compare directly the 1 loop result to our correction to the action (as both are

exponentiated, and directly added to the original result).

Our regularization scheme is not dimensional regularization, the preferred one from the

field theory point of view. However the nature of the divergences should be the same, such

that the difference in physical quantities using different regulators is finite. We can safely

conclude that this structure of singularities is compatible with box integrals in dimensional

regularization. The general structure of box diagrams in this scheme can be found in [15]

and for the case of all propagators massive in [16], see also [17]. For example, the MHV

one-loop amplitude for four gluons was obtained in [14]

M(k+
1 , k+

2 , k−
3 , k−

4 ) = 8g2s2
(

I
(4)
0 (s, t) + I

(4)
0 (s, u) + I

(4)
0 (t, u)

)

, (4.4)

I
(4)
0 (s, t) =

∫

d4l

(2π)4
1

(l2+m2)((l−k1)2+m2)((l− k1− k2)2+ m2)((l+ k4)2+m2)
.

with the standard Mandelstam variables

s = (k1 + k2)
2, t = (k1 + k4)

2, u = (k1 + k3)
2. (4.5)

Let us first compare to the large mass limit |s|, |t| ≪ M2
W . One may easily rescale the

values of the momenta above by m and find

I
(4)
0 (s, t) =

1

m4

∫

d4 l̂

(2π)4
1

(l̂2 + 1)((l̂ − k̂1)2 + 1)((l̂ − k̂1 − k̂2)2 + 1)((l̂ + k̂4)2 + 1)
.

where we write the unitless momenta l̂ = l
m . Identifying m = MW above, we see that the

first correction does in fact go as 1
M4

W

, with some unitless (and finite!) coefficient depending
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on kinematic information contained in the ki. This is qualitatively similar to the answer

that we obtained in the strong coupling regime (finite
M4

W

). It would be interesting to try to

expand this and compare to what we have more quantitatively, and help to decide whether

accounting for the running in the gi is included in this overall factor.

We may also wish to look at the other regime, where s, t ≫ M2
IR ≫ M2

W . In such a

situation, one is taking that the mass MW is small, and so the box integral above has new

IR divergences (if one sets m = 0 for example). This means that we have to set a new IR

regulator MIR to cut this off. Doing so will give divergences that approximate the fields

as massless first, i.e. in the theory with the full SU(n1 + n2) restored, and then have an

M2
w/p2 type of correction. This second type of term will give exactly the correction we have

computed, and with the same kind of new divergences we see. The new divergences will

come with 2 extra powers of MIR in the denominator. At the very least, we see that our

expression is compatible with the structure of infrared singularities at loop L this being of

the form M(L)
4 ∼ 1/M2L

IR (after we exponentiate this result). Unfortunately, we have been

unable to find a convenient expansion of this part of the box integral for direct comparison.

It is worth mentioning that the analysis discussed here shares some interesting aspects

with more phenomenologically relevant calculations like γγ → γγ in the standard model

discussed in [19, 20] where W-bosons or heavy quarks are allowed to run in loops. Sim-

ilarly, in the limit of large top quark mass the amplitudes for Higgs plus gluons simplify

tremendously as first shown in [21]. More recently, the computation of Higgs boson plus an

arbitrary number of partons [22], confirmed the persistence of such relatively simple struc-

ture. Considering quarks in the context of the AdS/CFT also indicates a rather simple

structure for the amplitudes [23, 24]. We hope that our analysis will help uncover simple

structure in the case of spontaneously broken phases.
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A SU(n1 + n2) → SU(n1) × SU(n2) × U(1)

In this section, we will be concerned with decomposing fields in the adjoint of SU(n1 + n2)

into representations of the subgroup SU(n1) × SU(n2) × U(1) to facilitate examination of

the Higgsing of the N = 4 theory. First, we note that the generators of a general SU(N)

can be written as diagonal elements

τ I=p =
1

√

p2 + p
diag(1, 1, 1, . . . 1,−p, 0, 0, 0) p ∈ (1 . . . N − 1) (A.1)
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and p ones appear before the final −p. The remaining N2 − 1 − (N − 1) = N(N − 1)

generators are the off diagonal elements. There are N(N − 1)/2 entries in the upper right

hand triangle of the N × N matrix. We take one entry to be 1√
2
, or i√

2
, and the rest

zero (therefore there are N(N − 1) of these). The lower left triangle is determined by the

property (τa)† = τa. Such matrices clearly form a basis for the set of traceless Hermetian

matrices that define the Lie algebra of SU(N).

Such a basis also satisfies

Tr (τ IτJ) = δIJ (A.2)

and we define the structure constants via6

[

τ I , τJ
]

= if IJKτK . (A.3)

For the off diagonal components, it is often convenient to use a “±” basis, where one takes

the two off diagonal elements with entries in the same spot (different only because of the i)

and constructing τ q + iτ q+1 = τ+q (q odd). The hermeitain conjugate we call τ−q. These

matrices can be chosen to be real, and have therefore one single non 0 entry that is 1. We

will only use this notation when we Higgs the theory.

For breaking SU(n1 + n2) → SU(n1) × SU(n2) × U(1) the following generator

is important

τ0 = diag

(

1

n1e
, . . . ,

−1

n2e
, . . .

)

. (A.4)

Above, the entry 1
n1e happens n1 times, the entry −1

n2e happens n2 times, and e is defined

to be

e ≡
√

n1 + n2√
n1n2

. (A.5)

Again, Tr ((τ0)2) = 1 because of
1

n1
+

1

n2
= e2. (A.6)

Fields in the adjoint representation of SU(n1 + n2) we represent in the following way

Σ̂Iτ I ≡ Σ̂ =

(

1
Σ + 0

Σ
n1e Ω+

Ω−
2
Σ − 0

Σ
n2e

)

(A.7)

where
1
Σ =

1
Σaτa and τa are the generators of SU(n1), and similarly for

2
Σ.

0
Σ is

understood to multiply the appropriate identity matrix. Further, Ω+ is an n1 ×n2 matrix,

and Ω− is an n2×n1 matrix. Clearly what we have done is taken the off diagonal elements

in the n1 × n2 block and reexpressed these in an appropriate ± basis, leaving the other off

diagonal elements alone. Looking ahead, the Higgsing effect will be giving the
0
Σ part of

some scalar field a vev (i.e. < Σ̂ >= aτ0). This has the appropriate symmetry properties:

6If one wants to satisfy the usual Tr (τ IτJ) = 1

2
δIJ , one simply scales τ I = αT I , fIJK = αF IJK , g =

Gα−1 with α =
√

2
−1

. The action is invariant under such a scaling (recall that in component notation,

no generators appear, and further gfabc always comes together: this is because we only deal with one

representation of the gauge group).
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SU(n1) SU(n2) U(1)

1
Σ Adj 1 0

2
Σ 1 Adj 0

Ω+
� �̄ +ge

Ω−
�̄ � −ge

0
Σ 1 1 0

Table 1. The charge of various fields under SU(n1) × SU(n2) × U(1).

the upper left SU(n1) and lower right SU(n2) matrices commute with this generator. The

unbroken U(1) is generated by τ0 itself.

First, we decompose the gauge field as above, and denote

Âµ
I
τ I ≡ Âµ =

(

1
Aµ + 0

Aµ

n1e W+
µ

W−
µ 2

Aµ − 0
Aµ

n2e

)

. (A.8)

Note that we are using a real gauge field, hence we have the restriction that (ÂI
µτ I)† = ÂI

µτ I .

This translates to the following restriction (W+
µ )† = W−

µ .

We calculate the gauge covariant derivative acting on Σ̂,7

DµΣ̂ ≡ ∂µΣ̂ − ig[Âµ, Σ̂] = (A.9)
(

Dµ 1
Σ − ig

(

W+
µ Ω− − Ω+W−

µ

)

+
∂µ 0

Σ
n1e DµΩ+ − ig

(

W+
µ 2

Σ −
1
ΣW+

µ − eW+
µ 0

Σ
)

DµΩ− − ig
(

W−
µ 1

Σ −
2
ΣW−

µ + eW−
µ

)

Dµ 2
Σ − ig

(

W−
µ Ω+ − Ω−W+

µ

)

− ∂µ 0
Σ

n2e

)

where the remaining gauge covariant derivatives are defined as follows

Dµ 1
Σ = ∂µ 1

Σ − ig[
1
Aµ,

1
Σ] (A.10)

Dµ 2
Σ = ∂µ 2

Σ − ig[
1
Aµ,

2
Σ] (A.11)

DµΩ− = ∂µΩ− − ig
(

2
AµΩ− − Ω−

1
Aµ − e

0
AµΩ−) (A.12)

DµΩ+ = ∂µΩ+ − ig
(

1
AµΩ+ − Ω+

2
Aµ + e

0
AµΩ+

)

. (A.13)

This is intuitively obvious: the traceless upper left block transforms as an adjoint of SU(n1),

Ω+ as a fundamental under SU(n1) and an antifundamental under SU(n2) and charge +ge

under the U(1) generated by τ0. Similar comments hold for Ω− and the traceless lower

right part of the field Σ̂. Below we show the chart of charges for the various fields under

SU(n1) × SU(n2) × U(1).

In table 1 we show the charges of various fields under SU(n1) × SU(n2) × U(1).

The action we wish to reexpress has the following field content: first we have 6(N2−1)

complex scalars denoted

Φ̂I
ij = −Φ̂I

ji i, j ∈ 1, 2, 3, 4 (A.14)

with the following restriction

(Φ̂I
ij)

∗ =
1

2
ǫijklΦ̂I

kl ≡ Φ̂Iij. (A.15)

7The gauge transformations are Σ̂′ = Σ̂− i[Λ, Σ̂] and gÂ′
µ = gÂµ + ∂µΛ + ig[Λ, Âµ] to linear order in Λ.
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This means we really have 3(N2 −1) complex scalars, i.e. 6(N2−1) real scalars. Each field

Φ̂I
ij transforms as a 6 of SU(4). Next, we have 4(N2 − 1) dirac spinors which we project

down to 4(N2 − 1) Weyl spinors using L = 1+γ5

2 and R = 1 − L:

L(χ̂I)i. (A.16)

(χ̂I)i is a 4 of SU(4). We also have (N2 − 1) gauge fields, already denoted above as

ÂI
µ. (A.17)

We decompose these fields in the following way

Âµ
I
τ I ≡ Âµ =

(

1
Aµ + 0

Aµ

n1e W+
µ

W−
µ 2

Aµ − 0
Aµ

n2e

)

(A.18)

χ̂Iiτ I ≡ χ̂i =

(

1
χi + 0

χi

n1e ξ+i

ξ−i
2
χi − 0

χi

n2e

)

(A.19)

Φ̂I
ijτ

I ≡ Φ̂ij =

(

1
φij + 0

φij

n1e ω+
ij

ω−
ij 2

χ − 0
χ

n2e

)

. (A.20)

We also define the following conventions

(
1
χi) ≡

1
χ̄i

(
2
χi) ≡

2
χ̄i

(ξ+i) ≡ ξ̄−i

(ξ−i) ≡ ξ̄+
i (A.21)

where the lowered SU(4) index indicates that it transforms as a 4̄ of SU(4). Finally, because

of constraint (A.15), we have that

(
1
φij)

† =
1

2
ǫijkl

1
φkl ≡ 1

φij

(
2
φij)

† =
1

2
ǫijkl

2
φkl ≡ 2

φij

(ω+
ij)

† =
1

2
ǫijklω−

ij ≡ ω−ij (A.22)

(ω−
ij)

† =
1

2
ǫijklω+

ij ≡ ω+ij (A.23)

where the ≡ is meant as the definition of the fields with the SU(4) indices up.

Using the above definitions, we write out the following terms. First, defining

F̂µν = 2∂[µ A ν] − ig[Âµ, Âν ] (A.24)

we find

F̂µν =

(

1
Fµν + 1

n1e 0
Fµν − ig2W+

[µ W−
ν] 2D[µ W+

ν]

2D[µ W+
ν] 2

Fµν − 1
n2e 0

Fµν − ig2W−
[µ W+

ν]

)

(A.25)
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where we have defined
1
F ,

2
F , and

0
F as above (of course with the commutator vanishing

for
0
F ). This gives quite trivially

− 1

4
Tr
(

F̂µν F̂µν
)

=

−1

4
Tr 1

[

(

1
Fµν + 0

Fµν

n1e
− ig2W+

[µ W−
ν]

)(

1
Fµν + 0

Fµν

n1e
− ig2W+[µ W− ν]

)

+2D[µ W+
ν]2D

[µ W− ν]

]

−1

4
Tr 2

[

(

2
Fµν − 0

Fµν

n2e
− ig2W−

[µ W+
ν]

)(

2
Fµν − 0

Fµν

n2e
− ig2W−[µ W+ ν]

)

+2D[µ W−
ν]2D

[µ W+ ν]

]

. (A.26)

Above, we have explicitly written out Tr = Tr 1 + Tr 2 to emphasize which kind of indices

are being traced over, even though this is evident from the term being traced.

Above, there are several terms that are zero. For example, traces of the form

Tr 1(
1
F

0
F ) vanish, as the trace of the SU(n1) matrices are zero. Further, because

of the cyclicity of the trace, traces of the form Tr 1(W+W−) = Tr 2(W−W+), which

allows us to combine certain terms. Further, one should note that the total term

−1
4

(

Tr 1(
0
Fµν 0

Fµν)/(en1)
2 + Tr 2(

0
Fµν 0

Fµν)/(en2)
2
)

= −1
4 0

Fµν 0
Fµν . This normalized co-

efficient is just the statement that Tr ((τ0)2) = 1. One can use these relationships to rewrite

the above as

− 1

4
Tr (F̂µν F̂µν) = −1

4
Tr 1(

1
Fµν 1

Fµν) − 1

4
Tr 2(

2
Fµν 2

Fµν) − 1

4 0
Fµν 0

Fµν (A.27)

−1

4

[

Tr 1
(

2D[µ W+
ν]2D

[µ W− ν]
)

+ Tr2
(

2D[µ W−
ν]2D

[µ W+ ν]
)]

+ig Tr1
(

1
FµνW+

µ W−
ν

)

+ ig Tr 2
(

2
FµνW−

µ W+
ν

)

+ige
1

2 0
Fµν

[

Tr 1(W+
µ W−

ν ) − Tr 2(W−
µ W+

ν )
]

−g2 Tr 1
(

W+
[µW−

ν]W
+[µW− ν]

)

− g2 Tr 2
(

W−
[µW+

ν]W
−[µW+ ν]

)

.

The terms on the third and fifth lines could be combined further into single terms using

the cyclicity of the trace. However, we leave it in the above presentation to exhibit the

symmetry + ↔ −, 1 ↔ 2 (referring to the SU(ni) factor), e → −e, as it must be from the

onset of the problem. In this expanded form, it is clear that when the W ’s are given a

mass from a vev, and integrated out, the remaining theory will have the promised gauge

symmetry of SU(n1) × SU(n2) × U(1).
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Similarly, one calculates

iTr
(

¯̂χiγ
µDµLχi

)

=

iTr 1

[

(

1
χ̄i + 0

χ̄i

n1e

)

γµL

(

Dµ 1
χi − ig

(

W+
µ ξ−i − ξ+iW−

µ

)

+
∂µ 0

χi

n1e

)

]

+iTr 1

[

ξ̄+
i γµL

(

Dµξ−i − ig
(

W−
µ 1

χi −
2
χiW−

µ + eW−
µ 0

χi
))

]

iTr 2

[

(

2
χ̄i − 0

χ̄i

n2e

)

γµL

(

Dµ 2
χi − ig

(

W−
µ Fξ+i − ξ−iW+

µ

)

− ∂µ 0
χi

n2e

)

]

+iTr 2

[

ξ̄−i γµL
(

Dµξ+i − ig
(

W+
µ 2

χi −
1
χiW+

µ − eW+
µ 0

χi
))

]

(A.28)

or again rearranging terms,

= iTr 1
(

1
χ̄iγ

µDµL
1
χi
)

+ iTr 2
(

2
χ̄iγ

µDµL
2
χi
)

+ i
0
χ̄iγ

µ∂µL
0
χi

+g Tr 1
(

1
χ̄iγ

µ[W+
µ Lξ−i − Lξ+iW−

µ ]
)

+ g Tr 2
(

2
χ̄iγ

µ[W−
µ Lξ+i − Lξ−iW+

µ ]
)

+
1

2
ge

0
χ̄iγ

µ

[

Tr1

(

W+
µ Lξ−i − Lξ+iW−

µ

)

− Tr 2

(

W−
µ Lξ+i − Lξ−iW+

µ

)]

+iTr 1
(

ξ̄+
i γµ

[

DµLξ−i − ig(W−
µ L

1
χi − L

2
χiW−

µ + eW−
µ L

0
χi)
])

+iTr 2
(

ξ̄−i γµ
[

DµLξ+i − ig(W+
µ L

2
χi − L

1
χiW+

µ − eW+
µ L

0
χi)
])

. (A.29)

For the scalars, one calculates

1

2
Tr
(

DµΦ̂ijD
µΦ̂ij

)

=

1

2
Tr 1

[

(

Dµ 1
φij − ig[W+

µ ω−
ij − ω+

ijW
−
µ ] +

∂µ 0
φij

n1e

)

×
(

Dµ
1
φij − ig[W+µω−ij − ω+ijW−µ] +

∂µ
0
φij

n1e

)

]

+
1

2
Tr 1

[

(

Dµω+
ij − ig[W+

µ 2
φij − 1

φijW
+
µ − eW+

µ 0
φij]
)

×
(

Dµω−ij − ig[W−µ
1
φij −

2
φijW+µ + eW+µ

0
φij ]
)

]

1

2
Tr 2

[

(

Dµ 2
φij − ig[W−

µ ω+
ij − ω−

ijW
+
µ ] − ∂µ 0

φij

n2e

)

×
(

Dµ
2
φij − ig[W−µω+ij − ω−ijW+µ] − ∂µ

0
φij

n2e

)

]

+
1

2
Tr 2

[

(

Dµω−
ij − ig[W−

µ 1
φij − 2

φijW
−
µ + eW−

µ 0
φij]
)

×
(

Dµω+ij − ig[W+µ
2
φij −

1
φijW−µ − eW−µ

0
φij ]
)

]

(A.30)
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and rearranging

=
1

2
Tr 1

(

Dµ 1
φijD

µ
1
φij
)

+
1

2
Tr 2

(

Dµ 2
φijD

µ
2
φij
)

+
1

2
∂µ 0

φij∂
µ

0
φij

−ig Tr 1
(

Dµ
1
φij
(

W+
µ ω−

ij − ω+
ijW

−
ij

))

− ig Tr 2
(

Dµ
2
φij
(

W−
µ ω+

ij − ω−
ijW

+
ij

))

−1

2
ige
[

Tr 1(W+
µ ω−

ij − ω+
ijW

−
µ ) − Tr2(W−

µ ω+
ij − ω−

ijW
+
µ )
]

∂µ
0
φij

+
1

2

[

Tr 1
([

Dµω+
ij − ig(W+

µ 2
φij − 1

φijW
+
µ )
]

[

Dµω−ij − ig(W−µ
1
φij −

2
φijW−µ)

]

)

+ Tr 2
([

Dµω−
ij − ig(W−

µ 1
φij − 2

φijW
−
µ )
]

[

Dµω+ij − ig(W+µ
2
φij −

1
φijW+µ)

]

)

]

−igeTr 1
(

[Dµω+
ij − ig(W+

µ 2
φij − 1

φijW
+
µ )]W−µ

)

0
φij

+igeTr 2
(

[Dµω−
ij − ig(W−

µ 1
φij − 2

φijW
−
µ )]W+µ

)

0
φij

+
1

2
g2e2

0
φij 0

φij
[

Tr 1(W+
µ W−µ) + Tr 2(W−

µ W+µ)
]

(A.31)

and again, when 2 terms are grouped in a square bracket, they can be condensed into one

term by the cyclicity of the trace. Giving a vev to any component of
0
φij will clearly induce

a mass for the W bosons, as one can see from the last line above. However, in the second

(and third) to last lines, you can see that a 2 point function for W+/ω− and W−/ω+. This

defined the degree of freedom “eaten” by the massive gauge field W , as we will see later.

The terms of the potential (not expanded) are

− g
(

Tr
(

¯̃
χ̂iLχ̂jΦ̂ij

)

− Tr
(

¯̂χiR ˜̂χjΦ̂
ij
))

(A.32)

and

+
1

4
g2Tr ([Φ̂ij , Φ̂kl][Φ̂

ij, Φ̂kl]) (A.33)

where we have defined

˜̂χI
i = C

(

(χ̂Ii)
)T

(A.34)

where C is the charge conjugation matrix C = −iγ2γ0. In what follows, we will define the

operation T̂ to be the transpose operation working only on spin indices (as the T above in

component notation does). This is in contrast to †, , and ∗ which all work on the matrices

τ I as well. This allows us to write

˜̂χI
i τ

I = C
(

(χ̂Ii)
)T̂

τ I

= C
(

(χ̂Iiτ I)
)T̂

, (A.35)
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and so we define

˜̂χI
i τ

I = ˜̂χi =





C(
1
χ̃i)

T̂
+

C(
0
χ̃i)

T̂

n1e C(ξ−i)
T̂

C(ξ+i)
T̂

C(
2
χ̃i)

T̂ − C(
0
χ̃i)

n2e





=





C
1
χ̄T̂

i +
C

0
χ̄T̂

i

n1e C(ξ̄+
i )T̂

C(ξ̄+
i )T̂ C

2
χ̄T̂

i − C
0
χ̄T̂

i

n2e





≡
(

1
χ̃i + 0

χ̃i

n1e ξ̃+
i

ξ̃−i 2
χ̃i − 0

χ̃i

n2e

)

(A.36)

where the last line is read of a definition of symbols. We further define







(
1
χ̃i) +

( 0
χ̃i)

n1e

(

ξ̃+
i

)

(

ξ̃−i

)

(
2
χ̃i) − ( 0

χ̃i)
n2e






≡
(

1
¯̃χi + 0

¯̃χi

n1e
¯̃
ξ+i

¯̃ξ−i
2
¯̃χi − 0

¯̃χi

n2e

)

. (A.37)

With all these definitions, a few words of clarification is in order. The way to read the

above symbols is simple: the tildes indicate that a charge conjugation has been employed,

and the bars that a dirac conjugation. We have always pulled the indices to the outside

of such operations, so that the index structure surrounding the symbol accurately describe

its charges under SU(n1) × SU(n2) × U(1) as well as under the global SU(4).

Using the above definitions, we find

− gTr
(

¯̃
χ̂iLχ̂jΦ̂ij

)

=

−g Tr 1

[

(

1
¯̃χiL

1
χj + ¯̃ξ+iLξ−j

)

(

1
φij + 0

φij

n1e

)

]

−g Tr 1

[

(

1
¯̃χiLξ+j + e

0
¯̃χiLξ+j + ¯̃ξ+iL

2
χj
)

ω−
ij

]

−g Tr 2

[

(

2
¯̃χiL

2
χj + ¯̃ξ−iLξ+j

)

(

2
φij − 0

φij

n2e

)

]

−g Tr 2

[

(

2
¯̃χiLξ−j − e

0
¯̃χiLξ−j + ¯̃ξ−iL

1
χj
)

ω+
ij

]

. (A.38)

The other term in the potential can be obtained by replacing spinors without tildes

by those with (and vice versa), and switching the SU(4) indices from top to bottom, and
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finally replacing L → R. Therefore, we find

gTr
(

¯̂χiR ˜̂χjΦ̂
ij
)

=

g Tr 1

[

(

1
χ̄iR 1

χ̃j + ξ̄+
i Rξ̃−j

)

(

1
φij + 0

φij

n1e

)

]

+g Tr 1

[

(

1
χ̄iRξ̃+

j + e
0
χ̄iRξ̃+

j + ξ̄+
i R

2
χ̃j

)

ω−ij

]

+g Tr 2

[

(

2
χ̄iR 2

χ̃j + ξ̄−i Rξ̃+
j

)

(

2
φij − 0

φij

n2e

)

]

+g Tr 2

[

(

2
χ̄iRξ̃−j − e

0
χ̄iRξ̃−j + ξ̄−i R

1
χ̃j

)

ω+ij

]

(A.39)

The final term is

1

4
g2Tr ([Φ̂ij , Φ̂kl][Φ̂

ij, Φ̂kl]) = (A.40)

1

4
g2 Tr 1

[

(

[
1
φij , 1

φkl] +
[

ω+
ijω

−
kl − ω+

klω
−
ij

])(

[
1
φij ,

1
φkl] +

[

ω+ijω−kl − ω+klω−ij
])

]

1

4
g2 Tr 1

[

(

[
1
φijω

+
kl − 1

φklω
+
ij ] + [ω+

ij 2
φkl − ω+

kl 2
φij ] + e[

0
φijω

+
kl − 0

φklω
+
ij ]
)

×
(

[
2
φijω−kl −

2
φklω−ij] + [ω−ij

1
φkl − ω−kl

1
φij] − e[

0
φijω−kl −

0
φklω−ij]

)

]

1

4
g2 Tr 2

[

(

[
2
φij , 2

φkl] +
[

ω−
ijω

+
kl − ω−

klω
+
ij

])(

[
2
φij ,

2
φkl] +

[

ω−ijω+kl − ω−klω+ij
])

]

1

4
g2 Tr 2

[

(

[
2
φijω

−
kl − 2

φklω
−
ij ] + [ω−

ij 1
φkl − ω−

kl 1
φij ] − e[

0
φijω

−
kl − 0

φklω
−
ij ]
)

×
(

[
1
φijω+kl −

1
φklω+ij] + [ω+ij

2
φkl − ω+kl

2
φij] + e[

0
φijω+kl −

0
φklω+ij]

)

]

We are now in a position to give a vev to the scalar field
0
φij to do so, we would like

to expand around a vev

0
φij = iaij + δ

0
φij (A.41)

where aij are a set of constants with

a34 = a0, a12 = −a0, a12 = a0, a34 = −a0 (A.42)

with constant a (in what follows we will drop the delta and simply refer to
0
φij). In the

above, the minus signs have been chosen to agree with conditions (A.15). Now, we expect

the Higgs mechanism to transmute certain scalar degrees of freedom into the longitudinal

components of the massive W bosons. This is most easily seen by gauge fixing the scalar

sector appropriately. We can read the appropriate gauge fixing by looking for the 2 point
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function between ω+ and W−. We note that there is a 2 point function between ∂µ(ω+
12 −

ω+
34) and W−µ. Therefore, we define the field

Φ̂12 − Φ̂34 = Φ̂12 −
(

Φ̂12

)†
≡ 2iP̂ (A.43)

and note that this is an irreducible representation of the gauge group (it is the imaginary

component of the complex field). We now explicitly show that with the above vev, we

can gauge away the components of P which are off block diagonal. We do this by gauge

transforming the vev, and showing that off diagonal fluctuations can be generated (and

therefore canceled) by such a gauge transformation. We will show this explicitly for one

component. First, we introduce the notation that

1pq (A.44)

is an n1 by n2 matrix with a single non zero entry: a 1 in the p, q position (i.e. p ∈
{1 · · · n1}, q ∈ {1 · · · n2}). Similarly we define 1qp. Therefore, consider the generators

δ1 =
1√
2

(

0 1pq

1qp 0

)

δ2 =
i√
2

(

0 1pq

−1qp 0

)

(A.45)

Consider gauge transforming the vev of P

< P̂ >= −a0τ
0 (A.46)

via the gauge transformation

− a0τ
0 → exp(iδiλi)(−a0τ

0) exp(−iδiλi). (A.47)

For infinitesimal λi,

− a0τ
0 → (1 − a0i[δ

iλi, τ0]). (A.48)

This commutator is easy to work out, namely

i[δ1, τ0] = −eδ2

i[δ2, τ0] = eδ1 (A.49)

so that finally

− a0τ
0 → (1 − a0e(λ

2δ1 − λ1δ2). (A.50)

Since λ1 and λ2 are arbitrary and real, we may gauge away completely the real coefficients

of the generators δ1 and δ2 in P̂ . P̂ is a Hermetian field, and so the coefficents of δ1 and

δ2 are real, and so finally their coefficients (in P̂ ) may be completely removed with an

appropriate gauge choice. This statement is obviously true for all off diagonal components
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of P̂ and so we find that ω+
12 − ω+

34 = 0 is an appropriate gauge choice. Statements of this

gauge fixing may be written in the following useful forms

aijω±
ij = 0 (A.51)

ω±
12 = ω±

34 =
(

ω∓
12

)†
(A.52)

some of which will directly appear in the action when we expand. Above we have noted that

one can compare to the ω− statements by taking a † of the original equations, and replacing

12 ↔ 34. The particular case of SU(2) is studied in [14]. Discussion of the appropriate

massive representations of the N = 4 supersymmetry group was studied in [25].

B On different IR regulators

Here we will consider the two different regulations of the Kruczenski “wedge” solution and

show that their divergences cancel, and so the leading order IR divergences indeed cancel.

The two regulators considered are

1. A strict radial cutoff, taking r ∈ [ǫ,Λ]. We will want to consider the divergences as

ǫ → 0 and Λ → ∞ with the solution obeying boundary conditions set at r = 0.

2. A modification where the boundary conditions are set at r = ǫ (and the integration

ends here as well). This cures IR divergences, but not the UV ones, and so we will

still need a UV cutoff Λ.

We begin with a word of warning. One must always be careful when regulating integrals

using coordinate transformations that are functions of the limits of integration. Such

coordinate transformations can “shuffle infinities” to make certain IR divergences appear

to be UV ones, and vice versa. We will use the wedge solution to illustrate this point in a

concrete manner.

To do so, we will first display the wedge solution, and its counterpart with boundary

conditions set at r = ǫ. The boundary conditions are boost invariant, and in the case where

the cusp is at the boundary r = 0, it is also scale invariant. However, since the second

set of boundary conditions we wish to consider break the scale symmetry, we enforce the

boost invariance on the solution only. Therefore, we look for solutions of the form

x± = exp(τ ± σ), r = exp(τ)w(τ). (B.1)

The action then reduces to [7, 10]

∫

dτ

√

(w′ + w)2 − 1

w2
. (B.2)

Given that the action is explicitly τ independent, we may write the associated

first integral [11]

c =
w(w′ + w) − 1

w2
√

(w′ + w)2 − 1
, (B.3)
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which one can solve as

w′ = −−(1 − w2 + c2w4) + cw
√

1 − w2 + c2w4

w(c2w2 − 1)
. (B.4)

Looking for constant solutions, one finds that

w =
√

2 (B.5)

is a solution with

c =
1

2
. (B.6)

This is the solution with the “wedge” boundary conditions satisfied at r = 0. The solution

with boundary conditions at r = ǫ was found in [11] and is given implicitly by

eτ = ǫ

(

w +
√

2

w −
√

2

) 1√
2 1

1 + w
. (B.7)

The above solution asymptotes to the original wedge when τ → ∞ which is equivalently

w →
√

2. The above has the first integral c = 1
2 as with the original wedge.

We now illustrate the warning above. Let us consider the usual wedge solution given

by w =
√

2. In this case, the regulated action is

∫ ln
“

Λ√
2

”

ln
“

ǫ√
2

”

dτ = ln

(

Λ√
2

)

− ln

(

ǫ√
2

)

(B.8)

Now consider the coordinate transformation

eτ = ǫ
w√

2(w + 1)

(

w +
√

2

w −
√

2

) 1√
2

. (B.9)

This transforms our integral to the form

∫ ∞

wΛ,ǫ

dw
w2 + 2w + 2

2w(w + 1)(w2 − 2)
(B.10)

where wΛ,ǫ is the solution to

Λ√
2

= ǫ
wΛ,ǫ√

2(wΛ,ǫ + 1)

(

wΛ,ǫ +
√

2

wΛ,ǫ −
√

2

)
1√
2

. (B.11)

Note that the above integrand converges as w−2 for w → ∞. This, however, does not mean

that there is no IR divergence. This is because ǫ explicitly appears in the other bound of

integration wΛ,ǫ. Recall that for large Λ, wΛ,ǫ is close to
√

2, and z is large. One would

have associated this with a UV divergence, but because we have made a coordinate trans-

formation that explicitly uses the IR regulator, the finial regulator wΛ,ǫ depends explicitly

on this. Further, wΛ,ǫ is a function only of Λ/ǫ, which we can see both from its defining

equation, and also from the answer in the more trivial coordinates (which it has to match).
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Solution 1: Cusp at r = 0 Solution 2: Cusp at r = ǫ

form of sln. x± = exp(τ ± σ), r = exp(τ)ω(τ) x± = exp(τ ± σ), r = exp(τ)ω(τ)

form of act.
∫

dτ

√
(ω′+ω)2−1

ω2

∫

dτ

√
(ω′+ω)2−1

ω2

first integral c = ω(ω′+ω)−1

ω2
√

(ω′+ω)2−1
c = ω(ω′+ω)−1

ω2
√

(ω′+ω)2−1

solve for ω′ ω′ = −−(1−ω2+c2ω4)+cω
√

1−ω2+c2ω4

ω(c2ω2−1)
ω′ = −−(1−ω2+c2ω4)+cω

√
1−ω2+c2ω4

ω(c2ω2−1)

Solution ω =
√

2 eτ = ǫ
(

ω+
√

2
ω−

√
2

) 1√
2 1

1+ω

value of c 1
2

1
2

τ(w) coord. eτ = ǫ
(

w+
√

2
w−

√
2

)
1√
2 w√

2(1+w)
eτ = ǫ

(

w+
√

2
w−

√
2

)
1√
2 1

1+w

action
∫∞
wΛ,ǫ

dw w2+2w+2
2w(w+1)(w2−2)

∫∞
wΛ,ǫ

dw 2
√

w6+3w5−6w3−3w2+2w+1
w2(w+1)(w2−2)

Table 2. Outline of the calculations of this section.

We wish to play a similar game for the solution where the cusp has been moved to the

location r = ǫ. Using the integral of motion c, and the resulting expression for w′ we may

write the action in terms of w and dτ . Further, the implicit relation between w and τ gives

dτ in terms of w and dw, so we may write the action in this case as

∫ ∞

wΛ,ǫ

dw
2
√

w6 + 3w5 − 6w3 − 3w2 + 2w + 1

w2(w + 1)(w2 − 2)
. (B.12)

Now we can see why the previous coordinate transformation was important. The new

solution for r written in w coordinates is

r = ǫ
w

(w + 1)

(

w +
√

2

w −
√

2

)
1√
2

. (B.13)

and so the wΛ,ǫ is the same as that defined earlier, given that we are making strict r cutoffs.

The difference in actions can now be written

∫ ∞

wΛ,ǫ

dw

(

2
√

w6 + 3w5 − 6w3 − 3w2 + 2w + 1

w2(w + 1)(w2 − 2)
− w2 + 2w + 2

2w(w + 1)(w2 − 2)

)

. (B.14)

There is no pole at w =
√

2 in the above integral: it cancels. This means that all divergences

between the two actions have canceled. In particular, that means that they are divergent

as the same function of Λ/ǫ with Λ and ǫ defined the same way. Hence, they are actually

divergent in the same way in either ǫ or Λ. Thus, we have canceled both the UV and IR

divergences.8 This, however, does not mean that we have an unambiguous answer. Recall

that when subtracting infinities, one may arrive at any constant. Hence, the above constant

(after integration) is by no means special.

Below we outline the calculation. To lend clarity below, we call ω(τ) the function of

tau, reserving w for the change of variables τ(w).

We outline the calculations of this section in table 2.
8 In this discussion, we have neglected the divergence associated with the integral over σ.
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